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Abstract. The surface segregation is calculated in the coherent-potential approximation. 
The influenceofthe surface potential, d-band fillingsandd-levelsplittingofalloycomponents 
on the segregation is examined for a model density of states. The realistic tight-binding 
Hamiltonian is used to calculate the segregation for Cu-Ni alloys. The model for all reason- 
able values of parameters predicts the segregation of copper for all alloy compositions. 

1. Introduction 

The surface segregation effect, i.e. an enrichment of the surface layer with one of the 
components of the alloy, is reported or predicted for most binary transition-metal alloys 
[l, 21. The correlation of the phenomenological properties of the alloy, such as the 
heat of solution, the difference in the pure metal surface energies and the elastic size 
mismatch, with the surface segregation and its calculations based on pairwise atomic 
interactions have been the subject of many papers (cf [l, 3-17] and references therein). 
On the other hand, fewer attempts to correlate the surface segregation with electronic 
properties of alloys are reported in the literature [18-301. The main purpose of the 
present paper is to improve the calculation of the electronic contribution to the free 
energy of the system. The model assumed is based on the coherent-potential approxi- 
mation (CPA) in its classical form [31,32]. The improved version of CPA used in [18] has 
required subsequent approximations in the calculation of the segregation. Because of 
that, the method has led for the bulk crystal to a CPA equation identical with that 
obtained in [32] for a semi-circle model density of states and has introduced uncontrolled 
approximations for the surface density of states of the alloy. 

On the assumption that the surface affects the s bands of both constituents of the 
alloy in similar way, the driving force for the segregation of one component of the 
transition-metal alloy can be ascribed to changes in the d-electron band due to the 
presence of the surface [19]. At the present stage of calculations the s-band contribution 
is completely neglected. 

The paper is arranged in the following way. In § 2 the method of calculation is 
presented, a simple Hamiltonian is introduced and approximations going beyond the CPA 
are discussed. It is shown that calculations of the surface segregation can be performed at 
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various levels of accuracy both in the case of the simple Hamiltonian considered in this 
section and in the case of realistic densities of states of alloy components considered in 
§ 4. Section 3 contains the results of simple model calculations. The aim of these 
calculations is to illustrate the influence of the surface potential on the segregation and 
to show that the model based on d-band contributions of alloy components can lead 
to different behaviours of the surface segregation as a function of bulk composition 
depending on the parameters of the model. 

In § 4 the calculation for the realistic density of states of Cu-Ni alloys is reported. 
Because of its importance as a catalyst, many experimental [33-461 and theoretical 
[l ,  4-19,21-301 studies have been devoted to determining the surface composition 
of the alloy. The present work in comparison with the previous similar approaches 
[18,23,28,30] makes progress in two respects. 

( i )  The surface potential is incorporated into the theory of the surface segregation. 
(ii) Realistic densities of states of the alloy components are used in the calculation. 

The surface segregation in Cu-Ni alloys particularly for large Cu concentrations has 
recently become a subject of great interest because of the crossover phenomenon which 
is reported in both experimental [44] and theoretical [28] papers and is questioned by 
others [29,30,45]. The present paper seems to throw some light on the problem from 
the point of view of the microscopic electronic theory of the surface segregation. 

Section 5 contains the summary and the conclusions. 

2. Method of calculation 

The calculations of the surface segregation are based on the following assumptions. 

(i) The transition metals considered form a disordered binary substitutional alloy. 
(ii) The segregation depends mainly on the d-band properties of the components A 

The free energy per atom for the random alloy can be approximately written in the 

and B of the alloy. 

form [18] 

where x A , i  is the concentration of component A of the alloy in the ith layer parallel to 
the surface and U, is approximated by the electronic contribution 

In equation (2.2), pI is the average density of states for an atom in the ith layer. The 
density pi of states depends on the concentration xA,( in the ith layer ( j  = i) and on the 
concentrations in all the other layers ( j  # i). In addition, pI can depend on the potentials 
CY, which are different for the various layers. The potentials CY, are introduced to secure 
the neutrality of each crystal layer against the effect of the surface and/or a change in 
the concentrations of the components of the alloy in the ith crystal layer in relation to 
the bulk composition. 
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Equation (2.1) can be supplemented with a phonon term [21]. The calculation of the 
phonon term requires, however, the introduction of additional adjustable parameters 
[21] and it will be neglected in the present calculations. 

When the free energy has been calculated. the equilibrium concentrations xA,f in the 
layers affected by the presence of the surface can be obtained from the condition [ 181 

(2.3) - (JF/JxA.OX~ , + , = C O f l S t d n t  - ( J F / J x A  m )  I A i f n l = c o n s t d n t  

where the derivative with respect tax,., is taken for fixed concentrationsx,,, of all other 
layers and m denotes a layer in the bulk. 

2.1. Calculation of the electronic contribution U, 

In order to calculate the electronic contribution U,  to the free energy, the densities p, of 
states for each crystal layer have to be found. We first consider the model based on 
additional assumptions that the density of states of d electrons can be described by the 
simple Hamiltonian in the tight-binding form and that the single hopping integral 
between lattice sites occupied by components A and B of the alloy fulfils the relation 

tAA = LAB = tBB.  (2.4) 
The generalisation of the method for a more realistic Hamiltonian under the assumption 
that non-diagonal disorder can be neglected is straightforward and is discussed in Q 4. 
The method can be also generalised for the case when t i B  = tAAtBB using the method 
described in [47,48]. 

For a crystal with the surface described by the single-band Hamiltonian with diagonal 
disorder the CPA leads to the following set of coupled equations for the self-energy [49]: 

xA r[&A - z r ( z ) ] / { l  - [&A - 2 ~ ( z ) ] F r ( z ) }  

+ xB.I[EB - 21(z)I/{1 - [EB - zr(z)IFi(z)} = 0 (2.5) 
where E* and E ,  are the atomic levels of components A and B, respectively, x ~ . ~  andx, , 
are concentrations (atomic fractions) of the components A and B in the ith crystal layer 
parallel to the surface, C , ( z )  is the self-energy for the ith crystal layer and F f ( z )  is the 
matrix element of the Green function: 

R(z) = c. z,(z)C,:c, + w 

In equations (2.6)-(2.9), lni) denotes the Wannier state localised on a lattice site n 
belonging to the ith crystal layer, c; and cnr are the creation and annihilation operators, 
respectively, for the Wannier state localised on the lattice site ni, and t is the hopping 
integral between nearest-neighbour lattice sites. The operator if’ also contains the 
additional potentials aj assumed to be the same for both components A and B and 
introduced to ensure the neutrality of each crystal layer. 

Equations (2 .5)  are coupled equations because F, ( z )  depends not only on E r  but also 
on the self-energies 2, for all other lattice layers. The number of equations depends on 
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how many crystal layers are assumed to be affected by the presence of the surface. The 
simplest decoupling scheme that can be introduced to solve the set of equations (2.5) 
consists of the assumption that 

F ; ( z )  = F ? ( Z  - 2 , )  (2.10) 

where 

Equation (2.10) is exact for the bulk crystal and is equivalent for = 0 to the 
homogeneous decoupling approximation introduced in [49]. Moreover, the above 
relations are also exact if the Green function F, ( z )  is calculated with accuracy up to the 
second moment. 

Equations (2.5)-(2.11) constitute the simplest calculation scheme of the electronic 
contribution to the free energy in the scope of CPA. However, it can easily be generalised 
if we realise that using equation (2.10) we can calculate the matrix element of the Green 
function for the Hamiltonian 

(2.12) 

instead of the Hamiltonian K given by equation (2.8). The difference between K and 
K! which is given by 

(2.13) 

can be regarded as the perturbation and the Green function for the Hamiltonian k can 
be obtained with the aid of the perturbation theory. However, a more promising way 
for going beyond the homogeneous decoupling approximation seems to be the method 
based on the approximation corresponding to the rigid-band approximation for bulk 
crystals. If we assume that 

E] - = E ]  - E ,  (2.14) 

f o r j  # i ,  the Hamiltonian K,' can be included in the operator Wand the Green functions 
FY and F, can be obtained with the aid of an iterative procedure. 

Since the matrix elements F j ) ( z )  are related to the local densities p,(E) of states for 
the ith layer by the standard formula 

(2.15) 

the calculation scheme based on equations (2.5)-(2.11) requires knowledge of pi for the 
bulk crystal and all crystal layers affected by the presence of the surface. The density of 
states for the bulk crystal can be assumed to be either the realistic density of states for 
the alloy constituent or any model density of states approximating the density of states 
of alloy constituent. A very convenient way to construct the density of states for the 
crystal layers affected by the presence of the surface and/or the potential cyi is the 
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modified moments method [50,51]. The density p,(E; a,) of statescan thus be calculated 
at various levels of accuracy: 

N 

 pi(^; ai> = W ( E )  Z vripn(E) (2.16) 

where vrI is the nth modified moment andp, is the orthogonal polynomial defined by the 
weight function @ ( E ) ,  and the Green function F, can be easily calculated with the use of 
equation (2.15) for p, given by equation (2.16). 

Independently of the form of p, used in the calculation the CPA equations lead to the 
Green functions for the ith layer of the alloy. The density p,(E; x ~ . ~ ,  ai) of states for the 
ith layer of the alloy can then be calculated: 

I7 = 0 

(2.17) 

where z = E + is and the limit E+ 0 is taken. 
The density of states for the ith layer depends on concentrations of alloy components 

and on the potential a,for the ith layer. The potentials aj are determined self-consistently 
from the Friedel-like local neutrality condition 

It should be mentioned that the condition (2.18) is used both for the surface layer 
and for a layer in the bulk with the concentration xA,, #xA.b. The density 
p,,(E; x ~ , ~ ~  + Ax, aR7) of states where m denotes a layer in the bulk is needed in the 
calculationof d Ub/dXA,,,. The constraint (2.18) imposedin this way secures the neutrality 
of each crystal layer against the effect of the surface and/or achange in the concentrations 
of components of the alloy with respect to the bulk composition. 

Equations (2.5)-(2.18) are generalised for the realistic density of states of the alloy 
in SI 4. However, in order to show the effect of the local neutrality condition on the 
segregation and the general features of the segregation curves which can be obtained 
from the model based on d-band contributions, we start the calculations assuming a 
simple model density of states for the bulk crystal and the surface layer. 

3. Model calculations 

We start the calculation of the surface segregation assuming the simple model density 
of states for the ith crystal layer in the form 

p , ( E ;  a , )  = (bI /2n)( l  - E 2 ) 1 / 2 [ ( i  - bl )E2 - (1 - b, )a ,E2 + bf + ( c ~ , / 2 ) ~ ] - I  (3.1) 

( 3 4  

where 

b, = ,U>, - CY?. 

,u2, is the second moment of the density of states for the ith crystal layer and the energy 
scale was assumed so that the band width is equal to 2. The model density of states is 
accurate up to the second moment and was previously used in the calculation of the 
surface relaxation [52]. If the accuracy is limited to the second moment, the only layer 
affected by the presence of the low-index surface plane (except for (110) plane for the 
FCC lattice and the (111) plane for the BCC lattice) is the surface layer. 
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B xA' b u l k  

Figure 1. (a )  Surface segregation at the (001) surface plane of a FCC alloy at 300 K where the 
d-band filling for both of the alloy components is equal to 5 and 6 = -0.25 (in units of half- 
band width; the band width is assumed in all present calculations to be equal to 4 eV): 
_ _ _  . results for potentials CY, = 0; -.  -. results for potential a, calculated from the 
neutralitycondition(2.18). (b)Thesameas(a)butforN,  = 6, N B  = 5 a n d 6  = -0.40:. ' .  ., 
results obtained with the neutrality condition used in [23]. 

CPA equations for the bulk crystal and for the surface layer together with the local 
neutrality constraint form the set of equations which fully determines the density of 
states for the ith layer of the alloy and the d-band contribution U, to the free energy of 
the system. The derivative d Ui/dxA,, can be calculated partly analytically for the simple 
model considered in this section. 

The density p, of states fulfils symmetry relations [32] with respect to the con- 
centrations of alloy components. They lead to particularly simple symmetry properties 
of the derivative of the free energy in the case when both components have a half-filled 
d band ( N A  = NB = 5 ) :  

where 

pf)(c) = &AC + & B ( l  - c) + (3.4) 

If CY, = 0 for all crystal layers, equation (3.3) leads to the segregation curve which has 
a crossover forxA,b = 0.5 and the upper part of the curve ( forx,,, > 0.5) can be obtained 
from its lower part by two succeeding mirror reflections with respect to the straight lines: 

The calculation scheme based on the density of states in the form (3.1) was first 
applied to the hypothetical alloy for which both components have a half-filled d band 
( N A  = NB = 5). The alloy is assumed to form the crystal of the FCC symmetry with the 
(001) surface plane. This assumption determines the number of dangling bonds for an 
atom at the surface to be one third of the number of nearest neighbours. The surface 
plane is the only plane affected by the presence of the surface in the approximation 
considered. The calculations were performed for 6 = = -0.25. The results are 
shown in figure l(a). The broken curve represents the segregation curve for the case for 

XA.,  = X A . b  and XA.,  = 1 - xA.6 .  

- 
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0 0.5 1.0 0 0.5 
8 A B  

xA, bulk xAs bulk 

1.0 
A 

Figure 2. (a )  Surface segregation at the (001) surface plane of a FCC alloy at 600 K for 
6 = -0.25 and N ,  = N B  + 1: ---, N B  = 8; --, N B  = 6 ;  -.-, N B  = 4; . . . . , 
N B  = 2. ( b )  The same as (a) but for S = -0.40. 

which the constraint (2.18) is not imposed, the potentials a; are put equal to zero, and 
the surface and/or concentration changes disturb the neutrality of the crystal layer. The 
segregation curve in this case shows the symmetry properties discussed above. If the 
neutrality condition (2.18) is imposed, the segregation curve loses its simple symmetry 
properties and takes on the shape of the chain curve shown in figure l ( a ) .  Comparison 
of these two curves in the figure shows that the neutrality constraint ignored in [ 18,211 
has considerable effect and should not be neglected in the calculation of the electronic 
contribution to the free energy. A similar comparison is presented in figure l(6) for 
NA = 6 and NB = 5 .  The third curve in the figure (the dotted curve) is obtained when 
the neutrality constraint is imposed in the manner suggested in [20, 231 (the neutrality 
condition imposed in this way does not give any effect for N A  = NB). Figure l(6) shows 
that the way in which the neutrality constraint isimposedis also important. The sensitivity 
of the segregation on the neutrality condition also explains the discrepancy between 
results reported in [23,28] obtained from the same model but with different neutrality 
constraints. 

The model considered contains three parameters: the d-band fillings NA and NB of 
alloy components and the d-level splitting 6. It can be expected that the model in 
which hopping integrals have the same value independently of which atoms occupy 
neighbouring lattice sites will work better for metals for which the d-band fillings are 
close to each other. The d-level splitting 6 = for metals belonging to the same 
transition-metal series can be expected to be negative for NA > NB [53]. Figures 2 and 3 
illustrate the effect of band filling and d-level splitting on the segregation for NA = 
NB + 1 and 6 < 0. The figures show that both types of curve which cross and do not cross 
the no-segregation straight line can be obtained for different values of d-level splitting. 
The crossover occurs for smaller values of 6 (for greater absolute values) and shifts 
towards a larger bulk concentration of component A when NA increases. Figure 4 shows 
the effect of the different surfaces on the segregation. As could be expected, the 
segregation increases when the number of dangling bonds increases and the segregation 

- 
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A I  

J 
L 

2 0  

E 

A I  
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5 
L 

0.  

B 

x A ,  bulk 

Figure 3. Surface segregation at the (001) surface 
plane of a FCC alloy at 600 K for N A  = 8 and 
Nn = 7 :  . . . b = -0.25; ---, 6 = -0.40; 

Figure 4. Surface segregation of a BCC alloy (eight 
nearest neighbours) at 600 K for b = -0.25 and 
N, = N ,  + 1 = 6:-----,(001)or(lll)surface 
plane (four dangling bonds);- -. (1 10) surface 
plane (two dangling bonds). 

. 6 = -0.60. 

is significantly changed for the (001) surface plane of the BCC lattice (four dangling 
bonds) in comparison with the (110) surface plane (two dangling bonds). 

The effect of temperature is not very large. The calculations performed for the (001) 
surface plane of the BCC lattice, 6 = -0.25, N A  = N B  + 1 = 6 and T = 700 K give surface 
compositions which differ by less than 0.3% from those obtained for T = 600 K. This 
could be partly connected with the fact that in the present model the temperature enters 
only through the entropy term and all other effects which can be caused by a temperature 
change are neglected. 

The description of a real system is not the aim of the calculation presented in this 
section. However, it can be expected that the model based on the simple density of states 
will work for d-band fillings close to one half. Both the model density of states and the 
realistic densities of states assume relatively large values in the vicinity of the Fermi 
levels for such cases and this leads to similar behaviours in the process of the calculation 
of the surface potentials. Also alloys composed of metals lying in the middle of the first 
transition-metal series tend to crystallise in a BCC lattice [54] and the d-band density of 
states for the BCC lattice in the nearest-neighbour approximation is symmetrical with 
respect to E = 0 in a similar way to the model density of states. For these reasons, 
experimental data for Cr-Fe and CO-Fe were chosen for comparison with results 
obtained for the model density of states. Figures 5 and 6 show the comparisons for Cr- 
Fe and CO-Fe alloys, respectively, for values of 6 adjusted to obtain the best fits to the 
experimental data [55]. The sign of 6 is in agreement with 6 estimated from the work 
functions for Cr, Fe and CO [53] .  The adjustment of 6 allowed us to obtain a qualitative 
fit to experimental data; however, it should be mentioned that the increase in 6 to 0.20 
in the case of the Cr-Fe alloys and the decrease in 6 to -0.25 in the case of the CO-Fe 
alloys leads to the crossover for large bulk concentrations of Cr in the case of Cr-Fe 
alloys and for large bulk concentrations of Fe in the case of CO-Fe alloys. It should also 
be mentioned that the model density of states can be expected to work better for middle 
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Cr 1 

*" 

Fe 
0 0 5  1 .o 0 0 5  1 0  

Fe CO 
xco,  bulk 

Figure 5 .  Surface segregation for Cr-Fe alloys at Figure 6 .  Surface segregation for Co-Fe alloys at 
650K: ---. present model for S = 650K: ---, present model for d = 

- = 0.18, and N,, = 5 and N F c  = 6.4 is E ~ , ,  - = -0.22, Nee, = 7.9 and NFe = 6.4; 
assumed in agreement with [ 5 6 ] ;  - .-. exper- ,experimental data (551 (the data reported 
imental data taken from [55]. The other available in [60] and [61] are in qualitative agreement with 
experimental results [57-591 agree qualitatively those shown in the figure). 
with the data presented in the figure. 

alloy compositions. The process of alloying leads to a smooth density of states in this 
region of concentrations and all details of the densities of states of alloy components 
may be less important. 

The method described in D 2 makes it possible to use more realistic densities of states 
for alloy components. This possibility is particularly important for the calculation of the 
segregation in alloys with a nearly filled d band. We take advantage of this possibility in 
the following section. 

4. Calculations for Cu-Ni alloys 

Now, we assume that the electronic structure of the alloy is described by a more realistic 
Hamiltonian of the form 

H = D + W  (4.1) 

D = C, ~p.mcl,incp,in ( 4 4  

where 

p. in  

is diagonal and configurationally dependent and 

i n  # ] m  u,rn 
U .  v 

is the configurationally independent part of the Hamiltonian. In equations (4.2) and 
(4.3),  c;,in and cp~l, l  are the creation and annihilation operators, respectively, for the 
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Wannier state of ,U symmetry (p = 1 , 2  or 3 correspond to d orbitals of t2g symmetry and 
p = 4 or 5 correspond to d orbitals of eg symmetry). In a similar way to in [62], the 
hopping integrals tp.rn,v,m between orbitals p and v localised on sites n and m in crystal 
layers i and j are assumed to be independent of which atoms occupy the sites in and jm. 
E ~ , ~ ~  is equal to the atomic level E* if the site in is occupied by atom A and is equal to 
otherwise (it is assumed that E* and have the same values for orbitals of eg and t2g 
symmetry). The Hamiltonian (4.1) differs from that used in [62] by the presence of 
diagonal potentials ai introduced in a similar way to previously to secure the neutrality 
of each crystal layer against the effect of the surface and/or achange in the concentrations 
of components of the alloy in the ith crystal layer in relation to the bulk composition. 

For the Hamiltonian (4.1) the CPA leads to a similar set of coupled equations to those 
considered in 8 2. The only difference is that the set of equations is now doubled; we 
obtain separate equations for two symmetry components 2; (A = eg or t2J of the self- 
energy for the ith crystal layer: 

where F? is the A-symmetry component of the diagonal matrix element of the Green 
function 

F;(z) = (nilPiR(z)lni) (4.5) 
P), is the projection operator selecting the subspace of states having A symmetry and R 
is the Green function corresponding to the effective Hamiltonian 

The set of equations (4.4) is the generalisation of CPA equations derived in [62] for 
the case when crystal layers can differ because of the presence of the surface and reduces 
to the equations used in [62] for the bulk crystal and a, equal to zero. 

Equations (4.4) are coupled with respect to t2g and eg symmetry components of the 
self-energy as well as to the layer indices. In order to solve the complicated set of CPA 
equations the following simplifying approximation is introduced. We assume that F; can 
be calculated from the formula 

F!(Z) = Fi.l{z - [2; (2)  - E*]} (4.7) 
where A is the major component of the alloy and Fr.* is the Green function matrix 
element for component A and ith crystal layer. The approximation (4.7) incorporates 
both the homogeneous decoupling approximation and the t,,-e, decoupling approxi- 
mation. The latter is justified by the relatively small mixing of t2g and eg states in pure Ni 
and Cu crystals and was successfully used in [63] to obtain the Cu-Ni alloy density of 
states for a wide range of alloy compositions. We also assume that the presence of the 
surface affects only one crystal layer, i.e. the surface plane, and that the concentrations 
of alloy components can differ from their bulk values only in the surface plane. 

The Green function matrix element F$, , (Z)  occurring on the right-hand side of 
equation (4.7) can be calculated from the standard formula 

where pa,i  is the A-symmetry component of the density of states for a pure A (major) 
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component of the alloy, i denotes either the bulk or the surface layer, nh is the number 
of states of A symmetry (n tza  = 3, ncg = 2) and the density of states depends on the 
potential al. 

of states 
for the bulk layer with a, = 0 and al # 0 (required for the calculation of the derivative 
dUh/dx,,,) and for the surface layer, pi .h(E;  0) were obtained using the hopping inte- 
grals for the d band given in [64] for both Cu and Ni. The method used to obtain two 
symmetry components of the density of states was the method suggested in [65] adapted 
for the FCC lattice (see Appendix). Then, in a similar way to in [62], the components of 
the density of states were approximated by the straight-line segments (using 100segments 
for the whole band). In this way, Fi.b for each segment is obtained in the analytical form 
[66]. The densities of states both for the surface layer and for the layer with a, # 0 were 
obtained by the modified moments method (equation (2.16)). The bulk density 
&(E;  0) of states for a = 0 was used as the weight function in equation (2.16) for both 
p t ( E ;  as) and p i ( E ;  ab). Nin equation (2.16) was taken to beequal to2.  The expansion 
of the density of states in terms of orthogonal polynomials is certainly too short to 
reproduce all details of the surface density of states. However, since the density of states 
for the bulk is assumed to be the weight function, the first few terms of the expansion 
should correctly describe the effect of the surface on averages calculated over the density 
of states. It should be mentioned that the integration (4.8) can be analytically performed 
for each segment also in the case of modified densities of states and that the homogeneous 
decoupling approximation becomes exact in the case of the expansion (2.16) truncated 
at N = 2. The modified moments method can lead to a small unphysical negative value 
of the density of states for certain small regions of the energy. In such a case the density 
of states was taken to be equal to zero for such energy values and the whole density of 
states was renormalised. 

As in the case of the model calculation the potentials al were determined self- 
consistently from a Friedel-like local neutrality condition. 

In order to start the calculation by the CPA method, we need densities 

4.1. Results and discussion 

Figure 7 shows the surface composition as a function of the bulk composition for T = 
600K and the (001) surface plane. The results have been obtained for 6 = -0.40 
measured in half-band widths. It corresponds to the value of -0.82 eV for the Ni-rich 
region of bulk concentrations and such avalue has been previously used in the calculation 
of the alloy density of states [62]. Since the width of the Cu d band is less than that for 
Ni, the value of 6 corresponds to -0.61 eV for the Cu-rich region of bulk concentrations. 
The values of 6 are also in quite good agreement with the values which can be calculated 
from data reported in [53] .  

The calculations of the segregation are performed for the density of states of the 
major component of the alloy. The calculations of the surface segregation performed 
for the nickel density of states for the whole region of bulk concentrations leave the 
segregation curve qualitatively unchanged and the maximum difference between the 
values of the surface composition obtained for density of states of the major and minor 
components of the alloy is less than 0.03 atomic fraction. Thus the use of the density of 
states of a major component of the alloy does not lead to a qualitative change in the 
character of the segregation curve. 

Figure 7 also shows the dependence of the segregation on the Ni d-band filling. As 
can be seen, the dependence on d-band filling is relatively weak for the value of 6 used 
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Figure 7. Surface segregation of Cu-Ni alloys at the (001) surface plane at 600K for 
6 = -0.40 (measured in half-band widths) and N,, = 10: 0,  N,,  = 9.45; A .  NNI = 9.55; 
c, N,, = 9.35. 

in obtaining the results shown in figure 7 (as could be expected, the sensitivity of the 
surface composition on N,, decreases when xcu increases). 

The comparison between the segregation calculated by the present method for T = 
850 K and the experimental results is shown in figure 8 (most experimental results are 
obtained for a temperature range close to 850 K). As can be seen, the theoretical curve 
is in qualitative agreement with all experimental data except for those [44] which predict 
the crossover phenomenon for large bulk concentrations of copper. The segregation 
curve at present obtained also remains in qualitative agreement with the results of [23] 
and disagrees with the results of [28]. This point requires a short discussion. The methods 
used both in [28] andin the present paper include the neutrality constraint. The neutrality 
constraint is imposed in different ways. In [28] the band centres of alloy components are 
shifted to ensure neutrality and the condition that the constituent atoms of the alloy at 
the surface are electrically polarised in the same way as the bulk is imposed. On the 
other hand in the present paper the same surface potential is assumed for both alloy 
constituents. These ways of imposing the neutrality conditions are based on opposite 
approximations. The approximation used in the present calculation leaves the positions 
of d bands of alloy constituents unchanged as in the case of exact calculations for a crystal 
with a surface [67]. However, the different ways of imposing a neutrality condition do 
not seem to be the main reason for the discrepancy between our results and those of 
[28]. The derivative of the free energy with respect to the concentration in a layer in the 
bulk is calculated in [28] without a neutrality constraint (in our case the potential (Y was 
also used to ensure neutrality of a layer in the bulk in the calculation of the derivative). 
The manner of the calculation of the derivative for a layer in the bulk is probably the 
main source of the discrepancy. On the other hand it would also explain the qualitative 
agreement between our results and the results of [23]. The neutrality condition in the 
latter paper is introduced in a questionable way [68] but the calculations of derivatives 
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Figure 8. Comparison of calculated segregation curve (-) with experimental data (0, 
[33]; +, [34]; H, [35]; 0, [37]; 0, [38]; A, [39, 401; U, [41]; 5 .  [42]; 0, [43]; 0, [44]; A, 
[46]) for 6 = -0.40, the (001) surface plane and T = 850 K.  

for a surface layer and a layer in the bulk are performed in a more consistent way (in 
both cases the neutrality condition is not imposed). Thus our results obtained for a 
realistic density of states seem also to confirm the conclusion derived in [30] for a very 
simple density of states that the neutrality condition does not lead to the crossover of 
the segregation curve for Cu-Ni alloys. 

The question arises to what extent the results for Cu-Ni alloys are sensitive to the 
parameters of the model, i.e. 6 and d-band fillings of alloy constituents. The results 
obtained for a model density of states show that surface segregation is sensitive to these 
parameters. The value of 6 is the small difference between two large quantities and as 
such is difficult to calculate accurately. We can treat 6 as the parameter of the model not 
only because of difficulties in its calculation but primarily because the segregation is 
obtained as the result of a very complicated inter-play between the effect of the surface 
and the effect of alloying governed by the values of 6. Since the effect of the surface is 
taken into account approximately, the value of 6 even when calculated accurately may 
not be the best value to describe a real crystal. 

Figure 9 shows the surface segregation for the alloy containing 5 at. % Cu as a function 
of 6. At the same time the segregation for the alloy containing 90 at. % Cu was calculated. 
The segregation of copper in the Cu-rich alloy decreases when the absolute value of 6 
increases but the crossover phenomenon does not occur. The crossover phenomenon 
also does not appear when the d-band filling of Ni decreased to as low as 9 electrons/ 
atom. 

The interesting feature of the curve shown in figure 9 is the strong dependence of the 
surface segregation on 6 at around -0.4 eV. Figure 10 shows the surface segregation 
curve obtained for 6 = -0.15 measured in half-band widths (this value of 6 corresponds 
to -0.31 eV for the Ni-rich region of bulk concentrations) for the whole region of the 
bulk concentrations. For this value of 6 the segregation shows a very strong dependence 



882 M Brejnak and P Modrak 

0 2  
-1 6 -1 2 -0 8 -0 4 

6 (eV1 

Figure 9. Surface segregation at 600 K as a function of parameter 6 for Cu,, ,,,NI,, alloy 
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Figure 10. Surface segregation of Cu-Ni alloys at the (001) surface plane at 600 K for 6 = 
-0.15: X ,  N,,  = 9.45; 0. N N ,  = 9.55: 3, N , ,  = 9.40; the experimental data are denoted by 
the same symbols as in figure 8. 

on the d-band filling in the Ni-rich region of bulk concentrations. The  segregation curves 
have a very irregular shape in this region. This has a very simple explanation. The  
alloying process for a small value of 6 leaves much of the band structure of alloy 
constituents unchanged, and  the density of states at the Fermi level can change sig- 
nificantly with the change in d-band filling. The  shape of the density of states in the 
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vicinity of the Fermi level probably plays an important role in the calculation of the 
surface segregation. If the model for a small value of 6 describes the situation in the real 
crystal, this would explain the fact that experimental data are scattered for the Ni-rich 
region of bulk concentrations. The d-band filling can easily be changed by the presence 
of impurities and/or imperfections of the lattice in the alloy. 

The calculated surface segregation particularly for S = -0.40 (figure 8) is much 
lower than experimentally observed. This discrepancy can stem from the approximation 
made in calculating the surface effect on the density of states, from neglecting other 
effects except for the d-band contribution and, in particular, from neglecting the Cou- 
lomb electron-electron interaction in calculating the electronic energy. 

5. Summary and conclusions 

We have performed calculations of the surface segregation by the CPA method both for 
a model density of states and for a realistic density of states of Cu-Ni alloys. The 
calculation of the effect of the surface required additional approximations, some of 
which can be removed (see discussion in 9 2). The inclusion of other effects, such as 
surface relaxation, mismatch effects and lattice vibration would require introducing 
additional adjustable parameters. 

The calculations performed for the model density of states have shown that the 
surface potential is very important in determining the surface segregation and that 
the model based on the d-band contribution to the segregation process predicts a 
qualitatively different behaviour of the surface segregation as a function of bulk com- 
position depending on the d-band filling and on the d-level splitting of the alloy con- 
stituents. On the other hand the calculation performed for the realistic density of states 
of the Cu-Ni alloys predicts the segregation of copper for the whole region of bulk 
compositions and for all reasonable values of parameters and it does not seem very 
probable that a refinement of the model can lead to the crossover phenomenon. In the 
calculation of the alloy density of states for the bulk Cu-Ni crystal no other approxi- 
mations have been introduced except for those used before in similar calculations [62]. 
The Hubbard term neglected in the present calculation shifts the crossover to a large 
value of Cu concentration [28] and the calculation [29] performed with the energy term 
suggested in [69] does not also predict the segregation of nickel. However, it should be 
mentioned that the present calculations are confined to d-band effects; the d band 
certainly plays a decreasing role in determining the surface segregation when the d-band 
filling increases. Therefore, for Cu-rich alloys, other effects such as the effects of the s 
band and the lattice vibrations can play a relatively more important role. 

The calculation performed for the small absolute value of the d-band splitting shows 
a strong dependence of the segregation on the d-band filling for Ni-rich alloys. This 
could partly explain the disagreement with the experimental data for this region of alloy 
compositions. 
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Appendix 

The evaluation of the energy surface integrals by the method in [65] requires the partition 
of the Brillouin zone (or its irreducible part) into small tetrahedra. The irreducible 
Brillouin zone (IBZ) for the sc lattice has the form of a simple tetrahedron and it can 
easily be divided into n3 (n  = 2 , 3 , .  . .) congruent tetrahedra. (Moreover, six such 
tetrahedra form a cube; so the IBZ can be first filled up as much as possible with cubes 
and then supplemented with tetrahedra located along edges or at the corners of the 
IBZ.) 

The IBZ for a FCC lattice is a rather irregular polyhedron and it cannot be directly 
divided into congruent (or equivolume) tetrahedra. However, it can be decomposed 
into three tetrahedra [70], which can be obtained from IBZ for the sc lattice by suitably 
chosen linear transformations. The following transformations can be used: 
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